DeepSeek-Coder-V2
Last Updated on: Sep 12, 2025
DeepSeek-Coder-V2
0
0Reviews
11Views
0Visits
AI Code Assistant
AI Code Generator
AI Code Refactoring
AI Developer Tools
AI Testing & QA
AI Productivity Tools
Large Language Models (LLMs)
What is DeepSeek-Coder-V2?
DeepSeek‑Coder V2 is an open-source, Mixture‑of‑Experts (MoE) code-focused variant of DeepSeek‑V2, purpose-built for code generation, completion, debugging, and mathematical reasoning. Trained with an additional 6 trillion tokens of code and text, it supports up to 338 programming languages and a massive 128K‑token context window, rivaling or exceeding commercial code models in performance.
Who can use DeepSeek-Coder-V2 & how?
  • Developers & Engineers: Automate code completion, generation, debugging, and language support across hundreds of languages.
  • Data Scientists & Analysts: Use it to embed code in pipelines, analyze codebases, and perform math within scripts.
  • Product & Tooling Teams: Integrate prompt-based code assistants or CI/CD helper bots.
  • Researchers & Educators: Benchmark high-performing open-source code models and explore MoE architectures.
  • Enterprises & Startups: Deploy powerful code LLMs via Hugging Face, DeepSeek platform, or self-host.

How to Use DeepSeek-Coder V2?
  • Access the Models: Choose between Lite (16B parameters, 2.4B active) and Full (236B total, 21B active) on Hugging Face or DeepSeek’s API.
  • Install & Run: Load base or instruct variants; run prompts in chat or code completion tasks.
  • Provide Context: Use up to 128K tokens for large codeblocks or mixed code+text context.
  • Evaluate Performance: Benchmarks like HumanEval, MBPP+, LiveCodeBench show pass@1 up to 90.2%, math scores up to 75.7%.
  • Deploy Easily: Use OpenAI-compatible API on DeepSeek, or host via Hugging Face pipeline and Ollama.
What's so unique or special about DeepSeek-Coder-V2?
  • Code-First MoE Model: Combines DeepSeek-V2 backbone with massive code-specific pretraining (6T tokens) to outperform GPT-4-Turbo and Claude 3 Opus on code tasks.
  • Massive Language Coverage: Understands and generates code in 338 programming languages.
  • 128K Token Context: Ideal for editing large codebases or notebook-style workflows.
  • Benchmark Dominance: Achieves 90.2% on HumanEval, 76.2% on MBPP+, 53.7% on Math Odyssey, and top LiveCodeBench scores.
Things We Like
  • Best‑in‑class open-source code generation
  • Huge multi-language support
  • Long‑context for extensive code workflows
  • Lite and full models balance performance and compute
  • Easy deployment via API and Hugging Face
Things We Don't Like
  • Full 236B model demands high compute and memory
  • Lite version may lag behind full model on complex tasks
  • Being a MoE model, deployment and sharding are more complex
Photos & Videos
Screenshot 1
Pricing
Paid

Custom

Cusotm

Pricing information is not directly available on the website.
ATB Embeds
Reviews

Proud of the love you're getting? Show off your AI Toolbook reviews—then invite more fans to share the love and build your credibility.

Product Promotion

Add an AI Toolbook badge to your site—an easy way to drive followers, showcase updates, and collect reviews. It's like a mini 24/7 billboard for your AI.

Reviews

0 out of 5

Rating Distribution

5 star
0
4 star
0
3 star
0
2 star
0
1 star
0

Average score

Ease of use
0.0
Value for money
0.0
Functionality
0.0
Performance
0.0
Innovation
0.0

Popular Mention

FAQs

It’s a MoE‑based code-centric model fine‑tuned from DeepSeek‑V2 with additional pretraining, optimized for code tasks across hundreds of languages.
It covers 338 programming languages—far exceeding most code models.
Supports up to 128,000 tokens—suitable for whole projects or large notebooks.
Benchmarks show 90.2% HumanEval pass@1, 76.2% MBPP+, and 53.7% on Math Odyssey.
Lite: 16B total / 2.4B active; Full: 236B total / 21B active (both with base & instruct variants).

Similar AI Tools

OpenAI - GPT 4.1
logo

OpenAI - GPT 4.1

0
0
12
0

GPT-4.1 is OpenAI’s newest multimodal large language model, designed to deliver highly capable, efficient, and intelligent performance across a broad range of tasks. It builds on the foundation of GPT-4 and GPT-4 Turbo, offering enhanced reasoning, greater factual accuracy, and smoother integration with tools like code interpreters, retrieval systems, and image understanding. With native support for a 128K token context window, function calling, and robust tool usage, GPT-4.1 brings AI closer to behaving like a reliable, adaptive assistant—ready to work, build, and collaborate across tasks with speed and precision.

OpenAI - GPT 4.1
logo

OpenAI - GPT 4.1

0
0
12
0

GPT-4.1 is OpenAI’s newest multimodal large language model, designed to deliver highly capable, efficient, and intelligent performance across a broad range of tasks. It builds on the foundation of GPT-4 and GPT-4 Turbo, offering enhanced reasoning, greater factual accuracy, and smoother integration with tools like code interpreters, retrieval systems, and image understanding. With native support for a 128K token context window, function calling, and robust tool usage, GPT-4.1 brings AI closer to behaving like a reliable, adaptive assistant—ready to work, build, and collaborate across tasks with speed and precision.

OpenAI - GPT 4.1
logo

OpenAI - GPT 4.1

0
0
12
0

GPT-4.1 is OpenAI’s newest multimodal large language model, designed to deliver highly capable, efficient, and intelligent performance across a broad range of tasks. It builds on the foundation of GPT-4 and GPT-4 Turbo, offering enhanced reasoning, greater factual accuracy, and smoother integration with tools like code interpreters, retrieval systems, and image understanding. With native support for a 128K token context window, function calling, and robust tool usage, GPT-4.1 brings AI closer to behaving like a reliable, adaptive assistant—ready to work, build, and collaborate across tasks with speed and precision.

OpenAI GPT 4 Turbo
logo

OpenAI GPT 4 Turbo

0
0
7
0

GPT-4 Turbo is OpenAI’s enhanced version of GPT-4, engineered to deliver faster performance, extended context handling, and more cost-effective usage. Released in November 2023, GPT-4 Turbo boasts a 128,000-token context window, allowing it to process and generate longer and more complex content. It supports multimodal inputs, including text and images, making it versatile for various applications.

OpenAI GPT 4 Turbo
logo

OpenAI GPT 4 Turbo

0
0
7
0

GPT-4 Turbo is OpenAI’s enhanced version of GPT-4, engineered to deliver faster performance, extended context handling, and more cost-effective usage. Released in November 2023, GPT-4 Turbo boasts a 128,000-token context window, allowing it to process and generate longer and more complex content. It supports multimodal inputs, including text and images, making it versatile for various applications.

OpenAI GPT 4 Turbo
logo

OpenAI GPT 4 Turbo

0
0
7
0

GPT-4 Turbo is OpenAI’s enhanced version of GPT-4, engineered to deliver faster performance, extended context handling, and more cost-effective usage. Released in November 2023, GPT-4 Turbo boasts a 128,000-token context window, allowing it to process and generate longer and more complex content. It supports multimodal inputs, including text and images, making it versatile for various applications.

Grok 2
logo

Grok 2

0
0
8
0

Grok 2 is xAI’s second-generation chatbot that extends Grok’s capabilities to include real-time web access, multimodal output (text, vision, image generation via FLUX.1), and improved reasoning performance. It’s available to X Premium and Premium+ users and through xAI’s enterprise API.

Grok 2
logo

Grok 2

0
0
8
0

Grok 2 is xAI’s second-generation chatbot that extends Grok’s capabilities to include real-time web access, multimodal output (text, vision, image generation via FLUX.1), and improved reasoning performance. It’s available to X Premium and Premium+ users and through xAI’s enterprise API.

Grok 2
logo

Grok 2

0
0
8
0

Grok 2 is xAI’s second-generation chatbot that extends Grok’s capabilities to include real-time web access, multimodal output (text, vision, image generation via FLUX.1), and improved reasoning performance. It’s available to X Premium and Premium+ users and through xAI’s enterprise API.

Gemini 1.5 Pro
logo

Gemini 1.5 Pro

0
0
12
0

Gemini 1.5 Pro is Google DeepMind’s mid-size multimodal model, using a mixture-of-experts (MoE) architecture to deliver high performance with lower compute. It supports text, images, audio, video, and code, and features an experimental context window up to 1 million tokens—the longest among widely available models. It excels in long-document reasoning, multimodal understanding, and in-context learning.

Gemini 1.5 Pro
logo

Gemini 1.5 Pro

0
0
12
0

Gemini 1.5 Pro is Google DeepMind’s mid-size multimodal model, using a mixture-of-experts (MoE) architecture to deliver high performance with lower compute. It supports text, images, audio, video, and code, and features an experimental context window up to 1 million tokens—the longest among widely available models. It excels in long-document reasoning, multimodal understanding, and in-context learning.

Gemini 1.5 Pro
logo

Gemini 1.5 Pro

0
0
12
0

Gemini 1.5 Pro is Google DeepMind’s mid-size multimodal model, using a mixture-of-experts (MoE) architecture to deliver high performance with lower compute. It supports text, images, audio, video, and code, and features an experimental context window up to 1 million tokens—the longest among widely available models. It excels in long-document reasoning, multimodal understanding, and in-context learning.

Gemini Embedding
logo

Gemini Embedding

0
0
8
1

Gemini Embedding is Google DeepMind’s state-of-the-art text embedding model, built on the powerful Gemini family. It transforms text into high-dimensional numerical vectors (up to 3,072 dimensions) with exceptional accuracy and generalization across over 100 languages and multiple modalities—including code. It achieves state-of-the-art results on the Massive Multilingual Text Embedding Benchmark (MMTEB), outperforming prior models across multilingual, English, and code-based tasks

Gemini Embedding
logo

Gemini Embedding

0
0
8
1

Gemini Embedding is Google DeepMind’s state-of-the-art text embedding model, built on the powerful Gemini family. It transforms text into high-dimensional numerical vectors (up to 3,072 dimensions) with exceptional accuracy and generalization across over 100 languages and multiple modalities—including code. It achieves state-of-the-art results on the Massive Multilingual Text Embedding Benchmark (MMTEB), outperforming prior models across multilingual, English, and code-based tasks

Gemini Embedding
logo

Gemini Embedding

0
0
8
1

Gemini Embedding is Google DeepMind’s state-of-the-art text embedding model, built on the powerful Gemini family. It transforms text into high-dimensional numerical vectors (up to 3,072 dimensions) with exceptional accuracy and generalization across over 100 languages and multiple modalities—including code. It achieves state-of-the-art results on the Massive Multilingual Text Embedding Benchmark (MMTEB), outperforming prior models across multilingual, English, and code-based tasks

Meta Llama 3
logo

Meta Llama 3

0
0
11
1

Meta Llama 3 is Meta’s third-generation open-weight large language model family, released in April 2024 and enhanced in July 2024 with the 3.1 update. It spans three sizes—8B, 70B, and 405B parameters—each offering a 128K‑token context window. Llama 3 excels at reasoning, code generation, multilingual text, and instruction-following, and introduces multimodal vision (image understanding) capabilities in its 3.2 series. Robust safety mechanisms like Llama Guard 3, Code Shield, and CyberSec Eval 2 ensure responsible output.

Meta Llama 3
logo

Meta Llama 3

0
0
11
1

Meta Llama 3 is Meta’s third-generation open-weight large language model family, released in April 2024 and enhanced in July 2024 with the 3.1 update. It spans three sizes—8B, 70B, and 405B parameters—each offering a 128K‑token context window. Llama 3 excels at reasoning, code generation, multilingual text, and instruction-following, and introduces multimodal vision (image understanding) capabilities in its 3.2 series. Robust safety mechanisms like Llama Guard 3, Code Shield, and CyberSec Eval 2 ensure responsible output.

Meta Llama 3
logo

Meta Llama 3

0
0
11
1

Meta Llama 3 is Meta’s third-generation open-weight large language model family, released in April 2024 and enhanced in July 2024 with the 3.1 update. It spans three sizes—8B, 70B, and 405B parameters—each offering a 128K‑token context window. Llama 3 excels at reasoning, code generation, multilingual text, and instruction-following, and introduces multimodal vision (image understanding) capabilities in its 3.2 series. Robust safety mechanisms like Llama Guard 3, Code Shield, and CyberSec Eval 2 ensure responsible output.

Janus-Pro-7B
logo

Janus-Pro-7B

0
0
10
0

anus Pro 7B is DeepSeek’s flagship open-source multimodal AI model, unifying vision understanding and text-to-image generation within a single transformer architecture. Built on DeepSeek‑LLM‑7B, it uses a decoupled visual encoding approach paired with SigLIP‑L and VQ tokenizer, delivering superior visual fidelity, prompt alignment, and stability across tasks—benchmarked ahead of OpenAI’s DALL‑E 3 and Stable Diffusion variants.

Janus-Pro-7B
logo

Janus-Pro-7B

0
0
10
0

anus Pro 7B is DeepSeek’s flagship open-source multimodal AI model, unifying vision understanding and text-to-image generation within a single transformer architecture. Built on DeepSeek‑LLM‑7B, it uses a decoupled visual encoding approach paired with SigLIP‑L and VQ tokenizer, delivering superior visual fidelity, prompt alignment, and stability across tasks—benchmarked ahead of OpenAI’s DALL‑E 3 and Stable Diffusion variants.

Janus-Pro-7B
logo

Janus-Pro-7B

0
0
10
0

anus Pro 7B is DeepSeek’s flagship open-source multimodal AI model, unifying vision understanding and text-to-image generation within a single transformer architecture. Built on DeepSeek‑LLM‑7B, it uses a decoupled visual encoding approach paired with SigLIP‑L and VQ tokenizer, delivering superior visual fidelity, prompt alignment, and stability across tasks—benchmarked ahead of OpenAI’s DALL‑E 3 and Stable Diffusion variants.

Meta Llama 4 Scout
logo

Meta Llama 4 Scout

0
0
6
2

Llama 4 Scout is Meta’s compact and high-performance entry in the Llama 4 family, released April 5, 2025. Built on a mixture-of-experts (MoE) architecture with 17B active parameters (109B total) and a staggering 10‑million-token context window, it delivers top-tier speed and long-context reasoning while fitting on a single Nvidia H100 GPU. It outperforms models like Google's Gemma 3, Gemini 2.0 Flash‑Lite, and Mistral 3.1 across benchmarks.

Meta Llama 4 Scout
logo

Meta Llama 4 Scout

0
0
6
2

Llama 4 Scout is Meta’s compact and high-performance entry in the Llama 4 family, released April 5, 2025. Built on a mixture-of-experts (MoE) architecture with 17B active parameters (109B total) and a staggering 10‑million-token context window, it delivers top-tier speed and long-context reasoning while fitting on a single Nvidia H100 GPU. It outperforms models like Google's Gemma 3, Gemini 2.0 Flash‑Lite, and Mistral 3.1 across benchmarks.

Meta Llama 4 Scout
logo

Meta Llama 4 Scout

0
0
6
2

Llama 4 Scout is Meta’s compact and high-performance entry in the Llama 4 family, released April 5, 2025. Built on a mixture-of-experts (MoE) architecture with 17B active parameters (109B total) and a staggering 10‑million-token context window, it delivers top-tier speed and long-context reasoning while fitting on a single Nvidia H100 GPU. It outperforms models like Google's Gemma 3, Gemini 2.0 Flash‑Lite, and Mistral 3.1 across benchmarks.

Meta Llama 3.1
logo

Meta Llama 3.1

0
0
6
2

Llama 3.1 is Meta’s most advanced open-source Llama 3 model, released on July 23, 2024. It comes in three sizes—8B, 70B, and 405B parameters—with an expanded 128K-token context window and improved multilingual and multimodal capabilities. It significantly outperforms Llama 3 and rivals proprietary models across benchmarks like GSM8K, MMLU, HumanEval, ARC, and tool-augmented reasoning tasks.

Meta Llama 3.1
logo

Meta Llama 3.1

0
0
6
2

Llama 3.1 is Meta’s most advanced open-source Llama 3 model, released on July 23, 2024. It comes in three sizes—8B, 70B, and 405B parameters—with an expanded 128K-token context window and improved multilingual and multimodal capabilities. It significantly outperforms Llama 3 and rivals proprietary models across benchmarks like GSM8K, MMLU, HumanEval, ARC, and tool-augmented reasoning tasks.

Meta Llama 3.1
logo

Meta Llama 3.1

0
0
6
2

Llama 3.1 is Meta’s most advanced open-source Llama 3 model, released on July 23, 2024. It comes in three sizes—8B, 70B, and 405B parameters—with an expanded 128K-token context window and improved multilingual and multimodal capabilities. It significantly outperforms Llama 3 and rivals proprietary models across benchmarks like GSM8K, MMLU, HumanEval, ARC, and tool-augmented reasoning tasks.

Meta Llama 3.2
logo

Meta Llama 3.2

0
0
7
0

Llama 3.2 is Meta’s multimodal and lightweight update to its Llama 3 line, released on September 25, 2024. The family includes 1B and 3B text-only models optimized for edge devices, as well as 11B and 90B Vision models capable of image understanding. It offers a 128K-token context window, Grouped-Query Attention for efficient inference, and opens up on-device, private AI with strong multilingual (e.g. Hindi, Spanish) support.

Meta Llama 3.2
logo

Meta Llama 3.2

0
0
7
0

Llama 3.2 is Meta’s multimodal and lightweight update to its Llama 3 line, released on September 25, 2024. The family includes 1B and 3B text-only models optimized for edge devices, as well as 11B and 90B Vision models capable of image understanding. It offers a 128K-token context window, Grouped-Query Attention for efficient inference, and opens up on-device, private AI with strong multilingual (e.g. Hindi, Spanish) support.

Meta Llama 3.2
logo

Meta Llama 3.2

0
0
7
0

Llama 3.2 is Meta’s multimodal and lightweight update to its Llama 3 line, released on September 25, 2024. The family includes 1B and 3B text-only models optimized for edge devices, as well as 11B and 90B Vision models capable of image understanding. It offers a 128K-token context window, Grouped-Query Attention for efficient inference, and opens up on-device, private AI with strong multilingual (e.g. Hindi, Spanish) support.

Mistral Codestral 2501
0
0
7
0

Codestral 25.01 is Mistral AI’s upgraded code-generation model, released January 13, 2025. Featuring a more efficient architecture and improved tokenizer, it delivers code completion and intelligence about 2× faster than its predecessor, with support for fill-in-the-middle (FIM), code correction, test generation, and proficiency in over 80 programming languages, all within a 256K-token context window.

Mistral Codestral 2501
0
0
7
0

Codestral 25.01 is Mistral AI’s upgraded code-generation model, released January 13, 2025. Featuring a more efficient architecture and improved tokenizer, it delivers code completion and intelligence about 2× faster than its predecessor, with support for fill-in-the-middle (FIM), code correction, test generation, and proficiency in over 80 programming languages, all within a 256K-token context window.

Mistral Codestral 2501
0
0
7
0

Codestral 25.01 is Mistral AI’s upgraded code-generation model, released January 13, 2025. Featuring a more efficient architecture and improved tokenizer, it delivers code completion and intelligence about 2× faster than its predecessor, with support for fill-in-the-middle (FIM), code correction, test generation, and proficiency in over 80 programming languages, all within a 256K-token context window.

TrainKore
logo

TrainKore

0
0
4
1

Trainkore is a versatile AI orchestration platform that automates prompt generation, model selection, and cost optimization across large language models (LLMs). The Model Router intelligently routes prompt requests to the best-priced or highest-performing model, achieving up to 85% cost savings. Users benefit from an auto-prompt generation playground, advanced settings, and seamless control—all through an intuitive UI. Ideal for teams managing multiple AI providers, Trainkore dramatically simplifies LLM workflows while improving efficiency and oversight.

TrainKore
logo

TrainKore

0
0
4
1

Trainkore is a versatile AI orchestration platform that automates prompt generation, model selection, and cost optimization across large language models (LLMs). The Model Router intelligently routes prompt requests to the best-priced or highest-performing model, achieving up to 85% cost savings. Users benefit from an auto-prompt generation playground, advanced settings, and seamless control—all through an intuitive UI. Ideal for teams managing multiple AI providers, Trainkore dramatically simplifies LLM workflows while improving efficiency and oversight.

TrainKore
logo

TrainKore

0
0
4
1

Trainkore is a versatile AI orchestration platform that automates prompt generation, model selection, and cost optimization across large language models (LLMs). The Model Router intelligently routes prompt requests to the best-priced or highest-performing model, achieving up to 85% cost savings. Users benefit from an auto-prompt generation playground, advanced settings, and seamless control—all through an intuitive UI. Ideal for teams managing multiple AI providers, Trainkore dramatically simplifies LLM workflows while improving efficiency and oversight.

Editorial Note

This page was researched and written by the ATB Editorial Team. Our team researches each AI tool by reviewing its official website, testing features, exploring real use cases, and considering user feedback. Every page is fact-checked and regularly updated to ensure the information stays accurate, neutral, and useful for our readers.

If you have any suggestions or questions, email us at hello@aitoolbook.ai